B-cells promote intra-islet CD8+ cytotoxic T-cell survival to enhance type 1 diabetes.

نویسندگان

  • Gillian M Brodie
  • Maja Wallberg
  • Pere Santamaria
  • F Susan Wong
  • E Allison Green
چکیده

OBJECTIVE To determine the role of B-cells in promoting CD8(+) T-cell-mediated beta cell destruction in chronically inflamed islets. RESEARCH DESIGN AND METHODS-RIP: TNFalpha-NOD mice were crossed to B-cell-deficient NOD mice, and diabetes development was monitored. We used in vitro antigen presentation assays and in vivo administration of bromodeoxyuridine coupled to flow cytometry assays to assess intra-islet T-cell activation in the absence or presence of B-cells. CD4(+)Foxp3(+) activity in the absence or presence of B-cells was tested using in vivo depletion techniques. Cytokine production and apoptosis assays determined the capacity of CD8(+) T-cells transform to cytotoxic T-lymphocytes (CTLs) and survive within inflamed islets in the absence or presence of B-cells. RESULTS B-cell deficiency significantly delayed diabetes development in chronically inflamed islets. Reintroduction of B-cells incapable of secreting immunoglobulin restored diabetes development. Both CD4(+) and CD8(+) T-cell activation was unimpaired by B-cell deficiency, and delayed disease was not due to CD4(+)Foxp3(+) T-cell suppression of T-cell responses. Instead, at the CTL transition stage, B-cell deficiency resulted in apoptosis of intra-islet CTLs. CONCLUSIONS In inflamed islets, B-cells are central for the efficient intra-islet survival of CTLs, thereby promoting type 1 diabetes development.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Islet Amyloid Polypeptide is not a Target Antigen for CD8+ T-Cells in Type 2 Diabetes

Background: Type 2 diabetes (T2D) is a chronic metabolic disorder in which beta-cells are destroyed. The islet amyloid polypeptide (IAPP) produced by beta-cells has been reported to influence beta-cell destruction. Objective: To evaluate if IAPP can act as an autoantigen and therefore, to see if CD8 + T-cells specific for this protein might be present in T2D patients. Methods: Peripheral blood ...

متن کامل

CD4 CD25 T regulatory cells control anti-islet CD8 T cells through TGF- –TGF- receptor interactions in type 1 diabetes

Pancreatic lymph node-derived CD4 CD25 T regulatory (Treg) cells inhibit in situ differentiation of islet-reactive CD8 T cells into cytotoxic T lymphocytes, thereby preventing diabetes progression. The mechanism by which these Treg cells suppress anti-islet CD8 T cells is unknown. Here, we show by using a CD8 T cell-mediated model of type 1 diabetes that transforming growth factor (TGF)–TGFrece...

متن کامل

Anti-Islet Autoantibodies Trigger Autoimmune Diabetes in the Presence of an Increased Frequency of Islet-Reactive CD4 T Cells

OBJECTIVE To define cellular mechanisms by which B cells promote type 1 diabetes. RESEARCH DESIGN AND METHODS The study measured islet-specific CD4 T cell regulation in T-cell receptor transgenic mice with elevated frequencies of CD4 T cells recognizing hen egg lysozyme (HEL) autoantigen expressed in islet β-cells and thymic epithelium under control of the insulin-gene promoter. The effects o...

متن کامل

Granzyme B Is Dispensable in the Development of Diabetes in Non-Obese Diabetic Mice

Pancreatic beta cell destruction in type 1 diabetes is mediated by cytotoxic CD8(+) T lymphoctyes (CTL). Granzyme B is an effector molecule used by CTL to kill target cells. We previously showed that granzyme B-deficient allogeneic CTL inefficiently killed pancreatic islets in vitro. We generated granzyme B-deficient non-obese diabetic (NOD) mice to test whether granzyme B is an important effec...

متن کامل

An islet-specific pulse of TGF-β abrogates CTL function and promotes β cell survival independent of Foxp3+ T cells.

Effective therapies that prevent chronic inflammation from developing into type 1 diabetes remain elusive. In this study, we show that expression of TGF-β for just 1 wk in inflamed islets of NOD mice significantly delays diabetes development. Time course studies demonstrated that the brief TGF-β pulse protects only if administered when extensive β cell destruction has occurred. Surprisingly, TG...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Diabetes

دوره 57 4  شماره 

صفحات  -

تاریخ انتشار 2008